
DevNet Experts.
Topic- Jinja2

devnetexperts@gmail.com+91 9892028199

DevNet Experts

OVERVIEW
Jinja2 Introduction

Variable Substitution

Ansible with Jinja2

Jinja2 Templating

Use cases

DevNet Experts
Introduction.

Can be used directly in Python programs

Can also be used in a wide range of applications as

their template rendering engine e.g.

Web frameworks like Django, Flask etc.

Configuration management tools like Ansible,

Saltstack

Static site generator tools like Pelican and so on.

Let’s try to put things in perspective.

Jinja2 is a feature rich templating language widely

used in the Python ecosystem.

1.

2.

3.

DevNet Experts

Template
Imagine Cisco having to print
thousands of such certificates
for the vast number of
certifications they offer.
They create a template with
placeholders for the name of
the person, certification, logo,
dates etc.
The things that tend to change
from one certificate to the
other.
The fixed part, along with
placeholders becomes a
template.

Template with Variable names
DevNet Experts

Back to Agenda Page

Placeholders in computer
terms are nothing but
variables.

DevNet Experts

Data Stored in Variables.

Name Certification name

Logo

DevNet Experts

Enters Jinja2

DevNet Experts

Final Document.

 Ansible with Jinja2

DevNet Experts

As we know Ansible has a large collection of

modules, Jinja2 module also comes preinstalled

with Ansible.

Ansible provides variables to the templates and

renders them using the template module which in

turn calls the rendering engine of Jinja2.

Template rendering happens on Ansible controller

Rendered task is then sent to the target machine for

execution.

This is done to minimize the package requirement

on target machine.

This also limits the amount of data Ansible passes

to the target machine.

REST APIs (Cont.)
DevNet Experts

Follow Object Oriented programming paradigm of

noun-verb.

There is an object or entity (noun) and we perform

some actions on that (verb) .

Verbs are the actions performed on the nouns or

resources.

Actions are performed by sending a request to the

server.

And results of the actions are sent back to the cl ient

as response.

This request and response happens via one of the

machine-readable data interchange formats we

discussed earl ier l ike XML, YAML, JSON etc.

Jinja2 Templating.
DevNet ExpertsJinja2 needs the following source ingredients to work

Template
Data
Data can come from various sources like

Basic idea is to identify static and dynamic parts of the
documents
Dynamic parts are parametrized, so they change
according to the data passed
Hence multiple versions of the document are created
with static part being the same and dynamic part
changing as per the data passed

1.
2.

 1.JSON data returned by API
 2.Loaded from static YAML file
 3.Python dictionary defined in our application

DevNet Experts

A more relevant use case - BGP Configuration.

router bgp 45000

 router-id 172.17.1.99
 bgp log-neighbor-changes
 neighbor 192.168.1.2 remote-as 40000
 neighbor 192.168.3.2 remote-as 50000
 address-family ipv4 unicast
 neighbor 192.168.1.2 activate
 network 172.17.1.0 mask 255.255.255.0
 exit-address-family

Shown above is a short snippet of CIsco IOS configuration
First we identify which part of the above snippet is static and which parts
change between devices
Typically ASNs, IP Addresses, address family type etc. change between
the devices
The parts that change are converted into variables to be substituted with
actual data when template is rendered at runtime

Sample target
config we want to
generate.

DevNet Experts

A more relevant use case - BGP Configuration

router bgp {{ local_asn }}
 router-id {{ router_id }}
 bgp log-neighbor-changes
 neighbor {{ neighbor_id_1 }} remote-as {{ remote_asn_1 }}
 neighbor {{ neighbor_id_2 }} remote-as {{ remote_asn_2 }}
 address-family ipv4 unicast
neighbor {{ neighbor_id_1 }} activate
network {{ network }} mask {{ net_mask }}
exit-address-family

Actual values replaced
with variables. This
becomes a template
now.

In Jinja2 anything found between a pair of double opening and closing curly
braces (“{{”, “}}”), known as delimiters, will be evaluated and replaced by the
engine
The templating engine expects to find a variable with the same name in the
list of variables
The variable name in the template will then be replaced with the value from
the data file which can be a JSON file, YAML file, Python dictionary etc.

DevNet Experts

When we substitute Variable Set 1 into the template, we

get first set of BGP config commands

Similarly when we substitute Variable Set 2 into the

template, we get second set of BGP config commands

A more relevant use case - BGP Configuration

local_asn: 45000
router_id: 172.17.1.99
neighbor_id_1: 192.168.1.2
neighbor_id_2: 192.168.3.2
remote_asn_1: 40000
remote_asn_2: 50000
network: 172.17.1.0
net_mask: 255.255.255.0

local_asn: 95000
router_id: 172.17.1.200
neighbor_id_1: 192.168.10.200
neighbor_id_2: 192.168.20.200
remote_asn_1: 70000
remote_asn_2: 80000
network: 172.17.1.0
net_mask: 255.255.255.0

Variable Set 1

Variable Set 2

DevNet Experts

Enters Jinja2

DevNet Experts

DEMO.

