
CCNA-DevNet (200-901) v1.0

Introduction

1

2

Trainer Profile

• 21 years of experience in IT industry focussed on automation

• 4 years of experience in corporate training

• Areas of expertise include Python, Ansible, REST APIs,
Automation, AI/ML, DevOps tools

• Extensive experience in building integrations using APIs on
Cisco ACI, Meraki, DNAC

• Experience in building end to end custom integration solutions
using ServiceNow, Grafana, Splunk, Slack, Microsoft Teams
and other tools

Ravinuthala Nagaraj
Cisco Certified DevNet

Specialist - Core

3

Things to note…

• Be regular to the sessions

• Where possible, practice along with the trainer

• Take homework seriously and try to complete

• Do not hesitate to ask questions

• Any general topics, raise in WhatsApp group or approach

support teams

4

Topics

• Python
• Ansible
• REST APIs
• GIT

Introduction to Python

• What is Cisco DevNet?
– Cisco’s developer program

– To help developers and IT professionals

– To write applications and integrations with Cisco products, platforms and APIs

– Kind of bridge between software engineering and networking

– Bringing best of both worlds together

– The things that we will be doing will require a “development environment”

5

What is a development environment?

• Collection of software, tools and resources to help us do our job

• Can create scripts, write programs, automate tasks, build integrations

• All these need tools setup on system and known as “development environment”

• Can be classified as local, hosted and cloud based

• Local – setup everything on our own machine

• Hosted – setup on a VM by a hosting provider, used by us

• Cloud Based – setup on one a machine hosted by one of the cloud providers like

AWS, Azure, Google Cloud etc.

6

Development Environment (Cont.)

• Collection of software, tools and resources to help us do our job

• Can create scripts, write programs, automate tasks, build integrations

• All these need tools setup on system and known as “development environment”

• Can be classified as local, hosted and cloud based

• Local – setup everything on our own machine

• Hosted – setup on a VM by a hosting provider, used by us

• Cloud Based – setup on one a machine hosted by one of the cloud providers like

AWS, Azure, Google Cloud etc.

7

• Development environment is typically a combination of:

– Shells / Command lines (bash, cmd, Terminal)

– Source control systems

– Programming languages

– Operating systems (Linux, Mac, Windows)

8

Development Environment (Cont.)

Scripting languages are:

o Low-level

o Not general purpose

o Ideal for automating simple

tasks

o Not modular or reusable

o Usually interpreted

9

Scripting vs Programming

Programming languages

o Can be low-level or high-level

o General purpose

o Can be used to write complex

applications

o Support modular programming

and are reusable

o Can be compiled or interpreted

• A program is a set of instructions given to a computer to perform a

specific operation using some data

• When the program is executed, raw data is processed into a desired

output format

• These programs are written in high-level programming languages which

are close to human languages

• They are then converted to machine understandable low-level languages

and executed

10

Fundamentals of Programming

● It is programming language created by "Guido Van

Rossum" in 1991.

● It is a general purpose & High-Level programming

Language.

● Python is commonly used for developing websites and

software, task automation, data analysis, and data

visualization etc...

11

What is Python?

∙ It is programming language created by "Guido Van Rossum" in

1991.

∙ It is a general purpose & High-Level programming Language.

∙ Python is commonly used for developing websites and software,

task automation, data analysis, and data visualization etc...

• ** High-Level programming: --->

∙ It is closer to Humans. i.e., human readable form.

When you write a High-level programming code,

it is not directly compiled on machine (CPU) but gets interpreted.

∙ Which means that it needs to run by another program. This

program is known as “
12

What is Python?

3. What is Python?
∙ It is programming language created by "Guido Van Rossum" in 1991.

∙ It is a general purpose & High-Level programming Language.

∙ Python is commonly used for developing websites and software, task automation, data analysis, and data visualization etc...

• ** High-Level programming: --->

∙ It is closer to Humans. i.e., human readable form.
When you write a High-level programming code,
it is not directly compiled on machine (CPU) but gets interpreted.

∙ Which means that it needs to run by another program. This program is known as “
Interpreter".

• "JAVA" is an exception. It is both compiled and interpreted.)

• Python Interpreter

∙ An Interpreter is a program that converts the code a developer writes into an intermediate language, called the byte code.

∙ It converts the code line by line, one at a time and translates till the end. (Stops at the line where an error occurs, if any)

∙ The Python Interpreter, stored in the memory as a collection of instructions in binary form.

13

Internal working of python:

✔The program gets compiled by the python compiler and
checks for errors, if the compiler finds an error it throws an
error message to the console.

✔ If there is no error, and the source code is well-formatted, the
compiler converts the source code to Bytecode.

✔The bytecode is then processed inside the Python Virtual
Machine (PVM) and is being interpreted to give the actual
machine code.

✔The machine code is then executed by the CPU to return the
output.

14

Python Modes:

Interactive mode: It is a command line shell, which gives
immediate feedback for each statement, while running previous
fed statement in active memory.

15

Script mode:
• For longer python codes/scripts; the script is written in a text file and saved as PY-

script with an extension of ".py".

• After writing and saving the code, the file is executed in CMD prompt.

• You only need a Gmail account. We will use 🡪 https://colab.research.google.com to learn the basics.

16

https://colab.research.google.com/

17

Click on “New notebook”

A new page will open, rename the notebook with “.ipynb” extension

What are Python Identifiers?

• Python Identifier is the name given to identify a variable, function, class, module or other object.

• Sometimes variable and identifier are often misunderstood as same but they are not.

✔ A variable is a memory location where a value can be stored.

✔ An identifier is the name given memory location where the variable is stored.

•

• Rules for identifier names —>> has to start with an alphabet A to Z or a to z or

• an underscore (_) followed by zero or more letters or underscores or digits. For example:

18

19

∙ An Identifier cannot start with digit. So, while var1 is valid, 1var is not valid.

∙ We can’t use special symbols like !, #,@,%,$ etc in our Identifier.

∙ Identifier can be of any length.

A} Python Variables:

∙ Variable is containers which store values. A variable is created the moment we first assign a
value to it.

∙ A Python variable is a name given to a memory location. It is the basic unit of storage in a
program.

∙ So, Variables in Python are reserved memory locations.

•

• Rules for creating variables in Python:

✔ A variable name must start with a letter or the underscore character.

✔ A variable name cannot start with a number.

✔ A variable name can only contain alpha-numeric characters and (A-z, 0-9, and _).

✔ Variable names are case-sensitive (name, Name and NAME are three different variables).

✔ The reserved words(keywords) cannot be used naming the variable.

20

Example*

21

• A variable can be a “String”, “Integer” & “Float”

• Integer: Numeric values.

• Float: Variables that are intended to hold floating precession values.

• String: Variables that are intended to hold a string of letters.

• Example’s*

Above, x = string, y = integer and z = float

22

1)Assigning multiple variables at
once:

23

2) Deleting variables:

Reserved Key Words in Python:

24

Multi-line statements:

• You can split a statement into multiple lines, if needed, as follows:

•

• Comments:

• Comments are used in any language to put some text for our reference without being executed.

• In Python comments start with # (hash) symbol

25

Data Types used in Python:

∙ As the name suggests DataType defines the type of the data stored in them.

∙ Depending on the datatype, the operations that can be performed and the storage

mechanism varies.

• Standard DataTypes are:

A. String

B. Number

C. List

D. Tuple

E. Dictionary

• Let us see in details what each of them.

26

A.String:

✔ String in Python or any language for that matter are a contiguous set of characters

represented in quotes.

✔ It can be single, double or triple quotes.

✔ So, in a way string in Python becomes an array or a list of characters

✔ Characters in String can be accessed using the slicing operators [] or [:]

✔ String index starts from 0 and also have -ve indexing.

✔ Strings are Immutable

Use dir(variable) to find the lists of operations, you can perform on 'variable'

27

Some of the Basic Operations you can perform on a string.

• Indexing:

28

Example:

□ Remove spaces from a string: (space between " " & character):

Remove the space:

. Lower and Upper case:

29

□ Splitting a "String":

When you split a string, it is converted into Python List

□ Joining back a "String":

• Slicing Operator & Index in a “String”:

• -ve Indexing:

• Get No. of characters in a

“String” or Count:

There are 3 ‘i’ and 4 ‘c’ present in the given string.

30

• Replace a Character in a String

• Or you can use ‘translate’

operation to change character:

• Converting a string into a list:

3
1

□ Raw Input: input ():

• This function first takes the input from the user and then evaluates the expression, which means Python
automatically identifies whether user entered a string or a number or list. If the input provided is not correct
then either syntax error or exception is raised by python. For example:

1 4 4

2

For Integers, you need to specify as int()

By default, the Raw input is treated as a string.

3

32

• Different Methods to print variables:

%s--> Placeholder so that you don’t have to break the string to insert variables n

between for printing %(name,age,weight) ---> represents the variables used

Recommended method:

33

B.Lists:
∙ Lists are very versatile collection of Data which is ordered and changeable in Python.

•

∙ List contains items wrapped in square brackets “[]” separated by commas ‘,’.

• Example: L1 = [A, B, C]

•

∙ Lists are similar to Arrays in other programming languages like C or Java, but there is a major difference

here: There is no restriction that list should consist of same data types in Python.

•

∙ So, elements of lists can be integers, strings, other lists, tuples or any other data type as well.

•

∙ Similar to Strings, Lists in Python are also indexed.

34

∙ List allows duplicate members. Example: list = [A, A, B, C].

Some of the Basic Operations you can perform on Lists.

Examples & Indexing:

Nested list: Lists also can contain other lists

(nested lists) or tuples inside them.

In beside the Index numbering are:

• 0 = Red

• 1 = Green

• 2 = Blue

• 3 = [1,2,3]

• 4 = (A, B, C)

35

36

□ Slicing:

□ Extending a List:

□ Appending-> adding List to an

existing on.It is not similar to

extending. It adds a list at the end

□ Lists are Mutable: You can change

a value in a List, using the Index no.

□ Removing an Element from a List:

37

□ Adding an Element in an existing List

□ Sorting and Reversing a List:

□ Deleting an element from a list:

.

38

□ Printing only selected Elements in a List:

□ Converting a List into a string:

□ Copy a List by reference:

39

□ Copy a List by Operations:

Tuple

• A tuple is a collection of objects(data) which are ordered and immutable.

• Tuples are sequences, just like lists and are Immutable.

• The differences between tuples and lists are, the tuples cannot be changed unlike

lists and tuples use parentheses, whereas lists use square brackets.

• A tuple consists of a number of values separated by commas and enclosed in ()

40

41

Some of the Basic Operations you can perform on Tuple.

□ Indexing: Tuples are also Indexed.

□ Tuples are Immutable:

You can’t change elements once it is assigned
in a Tuple.

42

□ You can apply multiple variables to

a Tuple: Tuple Unpacking

□ You can apply multiple variables to

a Tuple: Tuple Unpacking

□ Nested Tuple: With List

43

□ Concatenation in Tuple

□ Tuple Membership Test:

□ Creating a tuple with a single element:

The comma (,) after the single element is a must, which implies that this tuple can be
continued.

44

□ Converting a Tuple into a List:

□ Converting a Tuple into a String:

Dictionaries

45

Decision Making

• Normal execution flow of the program

statements is top to bottom

• But there could be situations where we need

to alter this sequential flow of execution

• One such situation is Decision Making

• We would need to decide which code block

to execute depending on satisfying certain

conditions

• Makes use of a data type known as Boolean

which consists of only two values - True and

False

46

Conditionals

• In Python decision making is achieved using

conditional statements

• Used to tell the program what to do when

the condition is evaluated to True

If statement

if expression:

statement

47

Ansible

For Network Automation

48

Introduction

● Ansible is a configuration management tool

● Ansible scripts are known as playbooks

● Playbooks consists of plays which are nothing but collection of tasks to be

performed as part of configuration management

● Ansible consists of a control node and a bunch of managed nodes

49

Introduction (Cont.)

● Control node is where Ansible is installed and managed nodes are the systems

on which we want to perform some tasks

● Ansible uses push-based model i.e. tasks are pushed by the control node onto

the target nodes

● Ansible is agentless i.e. we do not need to install any agent on the target nodes

50

Ansible Components

● Control Node

○ Linux machine with Python and Ansible installed which is used to

manage remote Linux servers or other devices

○ We cannot use the windows machine as a control node

○ Use multiple control nodes for resiliency

51

Ansible Components (Cont.)

● Managed Nodes

○ These nodes are the devices which are managed by Ansible

control node

○ This can be Linux servers or Networking devices

○ We do not need Ansible to be installed on Managed Nodes

52

Ansible Components (Cont.)

53

Automating Linux Servers

● Uses SSH to connect to the server

● Server does not have Ansible installed

● Copies Python code to the server (server must have Python execution engine)

● Server executes code and returns status of tasks

54

Automating Network Devices

● Python code runs locally on the Ansible control host (where Ansible is installed)

● Equivalent of writing Python scripts on a single server

● No code is copied to the device.

● Device does not need to have Python

55

Ansible Installation

● Using Linux package managers like apt or rpm etc.

○ Recommended for beginners

● Using Python package manager pip

○ Recommended for advanced users. Gives more control on the Python

version and Python packages used by Ansible

● Follow the following link for detailed instructions to install Ansible

○ https://www.digitalocean.com/community/tutorials/how-to-

install-and-configure-ansible-on-ubuntu-20-04
56

Ansible Installation (Cont.)

● Installation steps are shown below

57

sudo apt-add-repository ppa:ansible/ansible

sudo apt update

sudo apt install ansible

Ansible Installation (Cont.)

● If installation is successful, we can check the version using the following

command

58

$ ansible --version

ansible [core 2.12.10]

config file = /home/nexadmin/work/ccna_devnet/ansible/ansible.cfg

configured module search path = ['/home/nexadmin/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

ansible python module location = /usr/lib/python3/dist-packages/ansible

ansible collection location =

/home/nexadmin/.ansible/collections:/usr/share/ansible/collections

executable location = /usr/bin/ansible

python version = 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]

jinja version = 2.10.1

libyaml = True

Ansible Configuration

● Ansible needs a bunch of settings to work like SSH settings, location where

modules are located, etc.

● Default values have been specified for all the settings that Ansible needs

● However, they can be customised by specifying them in a config file called

ansible.cfg

59

Ansible Configuration (Cont.)

● By default, Ansible looks for ansible.cfg in the following locations

○ ANSIBLE_CONFIG env variable, if set

○ Current directory, where Ansible commands are being executed

○ Logging in user’s home directory

○ In /etc/ansible directory (default location with a default

ansible.cfg created by the installer)

60

Ansible Configuration (Cont.)

● Ansible recommends keeping ansible.cfg in project root dir so that settings can

be customised for each project

● The output of the command ansible --version shows which ansible.cfg is being

used

61

Ansible Configuration (Cont.)

● Shown below is a typical config file along with description of what each entry

stands for

62

Ansible Configuration (Cont.)

● Description of commonly used config settings is as follows

63

Ansible Inventory

● Inventory in Ansible is the list of devices being managed by the Control node

● The file which contains this list of devices is known as inventory file and is

another important file

● Default file name and location of Ansible inventory is /etc/ansible/hosts

● This can also be changed by creating inventory files per project or as needed

● If we change the name and location of inventory file, the same needs to be

mentioned in ansible.cfg so that Ansible knows where to look for inventory

64

Ansible Inventory (Cont.)

● Inventory can be specified either in INI file format or YAML file format

● Shown below is a typical inventory consisting of few routers and few switches

65

Ansible Inventory (Cont.)

● While this works fine, the kind of config steps for all routers, switches would be

similar

● Config settings could also differ region wise, division wise etc.

● So we can group hosts in inventory by their type, division, region or any other

logical separation

66

67

Grouping example

Getting Started

● Create a new file in the current dir or home dir called ansible.cfg

● Put the following contents in it

68

[defaults]

inventory=/home/project1/hosts

Getting Started (Cont.)

● Create a new file called inventory and put the following contents in it

69

R1 ansible_host=192.168.255.150 ansible_network_os=ios

S1 ansible_host=192.168.255.153 ansible_network_os=ios

Getting Started (Cont.)

● Use the following command to check if the inventory is correctly identified by

Ansible

70

$ ansible-inventory --list
{

"_meta": {

"hostvars": {

"r1": {

"ansible_host": "192.168.255.150",

"ansible_network_os": "ios"

},

"s1": {

"ansible_host": "192.168.255.153",

"ansible_network_os": "ios"

}

}

}

Getting Started (Cont.)

● Ansible also uses variables to store data similar to programming languages

● In the above example, ansible_host, ansible_network_os are the variables

● These are defined at each individual host level, hence they are called as Host

Vars

● Hosts in inventory can be divided into related groups by type like routers,

switches or by geography apac, emea

● Common attributes can be set at group level known as Group Vars

71

Getting Started (Cont.)

● We can rewrite inventory file as

follows

72

[routers]

r1 ansible_host=192.168.255.150

[switches]

s1 ansible_host=192.168.255.153

[devices:children]

routers

switches

[devices:vars]

ansible_network_os=ios

Getting Started (Cont.)

● Let us check if the devices are

reachable using ping. This is not icmp

ping, but ansible module ping.

● We should get an output as follows

73

ansible routers -m ping

r1 | UNREACHABLE! => {

"changed": false,

"msg": "Failed to connect to the host

via ssh:

\r\n**

******************************\r\n* IOSv is

strictly limited to use for evaluation,

demonstration and IOS *\r\n* education. IOSv is

provided as-is and is not supported by Cisco's

\r\n Technical Advisory Center. Any

use or disclosure, in whole or in part, *\r\n*

of the IOSv Software or Documentation to any

third party for any *\r\n* purposes

is expressly prohibited except as otherwise

authorized by *\r\n* Cisco in writing.

*\r\n********************************

**nexadm

in@192.168.255.150: Permission denied

(publickey,keyboard-interactive,password).",

"unreachable": true

}

Getting Started (Cont.)

● Ansible default connect mode is ssh

● In the above command we just asked Ansible to ping the devices

● So it tries to use ssh to connect to the devices and then perform ping

● But we have not specified any other details like ssh user or password

● We have not added ssh keys also to be able to connect without requiring

username and password

74

Getting Started (Cont.)

● Even after providing username and password it fails because, as we noted

earlier, ping is not an icmp ping but a simple python command which connects

to the device and returns a message “pong”

● More details here

○ https://serverfault.com/questions/1107102/ansible-ping-fail-session-

request-sent-but-read-header-failed-broken-pi

75

https://serverfault.com/questions/1107102/ansible-ping-fail-session-request-sent-but-read-header-failed-broken-pi
https://serverfault.com/questions/1107102/ansible-ping-fail-session-request-sent-but-read-header-failed-broken-pi

Getting Started (Cont.)

● So workaround is to use connection mode as network_cli

● Even better way is to use net_ping which we will use while

writing playbooks

76

$ ansible r1 -m ping -c network_cli

r1 | SUCCESS => {

"changed": false,

"ping": "pong"

}

Ansible Ad hoc Commands

● The command we have used above to ping the managed nodes is known as an

ad hoc command

● Ad hoc commands are command given directly on the terminal without putting

them in scripts (playbooks)

● For performing simple non-repetitive tasks ad hoc commands are quite handy

● However, for doing anything significant in Ansible, it is preferred to follow the

playbook approach as it gives more flexibility and reusability

77

Ansible Ad hoc Commands (Cont.)

● Check version of the network device using “show version” command

78

$ ansible r1 -m cli_command -a “command=’show version’”

● Above command uses a module called cli_command which can be used to issue

ad hoc commands with cli based devices

Ansible Ad hoc Commands (Cont.)

79

r1 | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python3"

},

"changed": false,

"stdout": "Cisco IOS Software, IOSv Software (VIOS-

ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE

(fc2)\nTechnical Support:

http://www.cisco.com/techsupport\nCopyright (c) 1986-2016 by Cisco

Systems, Inc.

Ansible Ad hoc Commands (Cont.)

● Check interface details of the network device using “sh ip int br” command

80

$ ansible r1 -m ios_command -a “commands=’sh ip int br’”

● Above command uses a module called ios_command which is module in

Ansible for using ad hoc commands with specific type of devices, in this cse ios

devices

Ansible Ad hoc Commands (Cont.)

81

"stdout_lines": [

[

"Interface IP-Address OK?

Method Status Protocol",

"GigabitEthernet0/0 192.168.255.150 YES NVRAM

up up ",

"GigabitEthernet0/1 unassigned YES

NVRAM administratively down down ",

"GigabitEthernet0/2 unassigned YES

NVRAM administratively down down ",

Ansible Ad hoc Commands (Cont.)

● Create an empty file on the linux managed host

82

$ ansible db1 -m command -a "touch work/output/welcome.txt"

db1 | CHANGED | rc=0 >>

Ansible Ad hoc Commands (Cont.)

● Edit the file we just created and put some content in it using the copy module

83

$ ansible db1 -m copy -a "content='Welcome to CCNA DevNet

Training\n' dest='work/output/welcome.txt'"

Ansible Ad hoc Commands (Cont.)

84

db1 | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/libexec/platform-python"

},

"changed": true,

"checksum": "fbb647f6fdbef049693587793b95201d957401f1",

"dest": "work/output/welcome.txt",

"gid": 0,

"group": "root",

"md5sum": "6f31d272f0d0c603873271798f22717e",

"mode": "0644",

"owner": "root",

"secontext": "unconfined_u:object_r:user_home_t:s0",

"size": 32,

"src": "/home/ansible/.ansible/tmp/ansible-tmp-1671798434.6680002-20198-97806766024130/source",

"state": "file",

"uid": 0

}

Ansible Playbooks

● A play is an ordered set of tasks run against hosts selected from your inventory

● A playbook is a text file containing a list of one or more plays to run in a specific

order

● Lengthy manual administrative steps can be broken down into structured plays

which can be used repeatedly against managed hosts

● Plays can also act as documented state of your IT infrastructure

● Playbook is normally saved with .yml (or .yaml) extension

85

Playbook Indentation

● Data elements at the same level in the hierarchy (such as items in the same list)

must have the same indentation

● Items that are children of another item must be indented more than their

parents

● You can also add blank lines for readability which get ignored when file is

executed

● Only the space character can be used for indentation; tab characters are not

allowed

86

Writing a Playbook

● A playbook begins with a line consisting of three dashes (---) as a start of

document marker

● It may end with three dots (...). This optional and often omitted

● The plays and tasks are executed in the same order as they are mentioned in

the playbook

87

Playbook Example

88

$ ansible r1 -m cli_command -a "command='sh ip int br'"

- name: playbook to get interface details using cli_command

hosts: r1

tasks:

- name: using cli_command to run show interface command

cli_command:

command: sh ip int br

register: command_output

- name: print command output

debug:

var: command_output

Running a Playbook

● We use the command ansible-playbook to run the playbooks

● When you run the playbook, output is generated to show the play and tasks

being executed

● Output also reports the results of each task executed

89

Running Playbook

90

PLAY [playbook to get interface details using cli_command] ************************

TASK [using cli_command to run show interface command]

ok: [r1]

TASK [print command output]

ok: [r1] => {

"command_output": {

"changed": false,

"failed": false,

"stdout": "Interface IP-Address OK? Method Status

Protocol\nGigabitEthernet0/0 192.168.255.150 …………….

"stdout_lines": [

"Interface IP-Address OK? Method Status

Protocol",

"GigabitEthernet0/0 192.168.255.150 YES NVRAM up up

",

"GigabitEthernet0/1 unassigned YES NVRAM administratively

down down

"GigabitEthernet0/2 unassigned YES NVRAM administratively

down down

Special Variables - hostvars

● The hostvars is a special variable which is associated with each host in the

inventory and contains the list of variables associated with that host

91

tasks:

- name: using debug module for print host vars

debug:

var: hostvars.r1

$ ansible r1 -m debug -a "var=hostvars.r1"

Special Variables - ansible_version

● When we tried to print hostcars associated with a specific host, we saw a bunch

of other data that got displayed

● Some of it is useful and hence can be extracted as needed

● One such is ansible_version and can be displayed as below

92

tasks:

- name: using debug module for print host vars

debug:

var: ansible_version

Special Variables - ansible_facts

● When we are running playbooks, there is a little task getting called without

being explicitly called - known as Gathering Facts

● Ansible facts are again a bunch of useful data stored in the form of variables

and available for each host

93

tasks:

- name: using debug module for print ansible facts

debug:

var: ansible_facts

Special Variables - ansible_facts (Cont.)

● Most of the times, we would not be doing anything with all the data being

fetched by Ansible in the form of ansible_facts

● Hence it can be disabled to save playbook execution time

94

- name: print ansible version info

hosts: r1

gather_facts: no

Debug Module to Print Output

● We can use debug module to also print any message to the console

● For this instead of the var parameter, we can use msg parameter

95

tasks:

- name: using debug module for print host vars

debug:

msg: '''Hello... Welcome to CCNA DevNet training...

The ansible version we are using is ---

{{hostvars.r1.ansible_version.full}}'''

Backing Up Configs

● We saw how to run commands on devices using commands module and copy

content to files using copy module

● We can now combine them to write a playbook to backup device configs

96

- name: extract running config using show run

ios_command:

commands:

- show run

register: result

- name: write config to file

copy:

content: "{{ result.stdout[0] }}"

dest: './backup/run_config.txt'

Ansible Modules

● We can use andble-doc command or online links to check all the modules

available in Ansible

● https://docs.ansible.com/ansible/2.9/modules/list_of_network_modules.html

97

$ ansible-doc -l

https://docs.ansible.com/ansible/2.9/modules/list_of_network_modules.html

IOS Configuration

● So far we have used ios_command module to run various run commands on

Cisco IOS devices

● Let us see how we can run config commands using ios_config module

98

$ ansible-doc ios_config

> CISCO.IOS.IOS_CONFIG (/usr/lib/python3/dist-

packages/ansible_collections/cisco/ios/plugins/modules/ios_config.py)

Cisco IOS configurations use a simple block indent file syntax for segmenting

configuration into

sections. This module provides an implementation for working with IOS

configuration sections in a

deterministic way

IOS Configuration (Cont.)

● Deploying SNMP Community Strings on Cisco router

○ The “SNMP community string” is like a user ID or password that

allows access to a router’s stats

● We will use ios_config module for this task

99

IOS Configuration (Cont.)

100

- name: PLAY DEFINITION - DEPLOY SNMP COMMUNITY STRINGS ON IOS DEVICES

hosts: r1

gather_facts: no

tasks:

- name: TASK 1 - USE COMMANDS IN THE PLAYBOOK

ios_config:

lines:

- snmp-server community public RO

IOS Configuration (Cont.)

101

$ ansible-playbook playbooks/old/07ios_config.yml

PLAY [PLAY DEFINITION - DEPLOY SNMP COMMUNITY STRINGS ON IOS DEVICES]

**

TASK [TASK 1 - USE COMMANDS IN THE PLAYBOOK]

[WARNING]: To ensure idempotency and correct diff the input configuration lines should be

similar to how they appear if present in the

running configuration on device

changed: [r1]

PLAY RECAP

**

r1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

IOS Configuration (Cont.)

● OSPF Configuration can be done as follows

● Since ospf config lines go under the interface, ios_config allows us to specify

parent line under which the other lines need to be added

102

IOS Configuration (Cont.)

103

- name: PLAY DEFINITION - CONFIGURE OSPF BETWEEN CSR02 AND CSR03

hosts: r1

gather_facts: false

tasks:

- name: TASK 1 - CONFIGURE OSPF

ios_config:

parents: interface GigabitEthernet0/1

lines:

- ip ospf 1 area 0

- ip ospf network point-to-point

Ansible Check Mode

● Ansible provides a way to do a dry run before actually running the playbook

against the devices

● We can use Ansible Check Mode for this

● We run the playbook command as it is just by adding a flag –check

104

$ ansible-playbook playbooks/ios_config_ospf.yml --check

Host Variables

• Host variables can be defined in the inventory file or within a directory called host_vars.

• Variables that are specific to a host. It will be applicable to host only.

• Accessible within playbooks and templates.

• host_vars directory is the recommended location for host

variables instead of specifying the variables inside the

inventory file.

#inventory

[switches]

10.1.1.1 ansible_port=22

switch1.cisco.com ansible_user=apiuser

[routers]

r1.cisco.com ansible_host=10.1.1.10 ansible_port=22

R2 ansible_ssh_pass=Nexaria@1

105

Group Variables

• Group variables can be defined in the inventory file or within a directory called group_vars

• Variables that are specific to a group. It will be applicable for all nodes that

are part of that specific group

• Accessible within playbooks and templates

• Group_vars directory is the recommended location for group variables

instead of specifying the variables inside the inventory file

#inventory File

[routers]

r1.cisco.com

r2

[routers:vars]

snmp_ro=cisco

ansible_network_os=ios

106

Verbosity in Ansible

● Verbosity levels are used to get the error information in detailed form.

● Verbosity also provides the facts information

● Use -v[vvv] to increase output verbosity

○ -v will show task results

○ -vv will show task results and task configuration

○ -vvv also shows information about connections to managed hosts

○ -vvvv adds information about plug-ins, users used to run scripts and names of

scripts that are executed

107

Playbook Variables

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

108

Playbook Variables

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

109

- name: PLAY DEFINITION - PRINT INTERFACES

hosts: r1

connection: local

gather_facts: no

vars:

interface : Gig0/1

tasks:

- name: TASK 1 - PRINT INTERFACE

debug:

msg: "The interface is {{ interface }}"

Playbook Variables - From File

● We can also load define variables in yaml files and load them using include_vars

module

110

Playbook Variables - From File

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

111

- name: PLAY DEFINITION - PRINT INTERFACES

hosts: r1

connection: local

gather_facts: no

tasks:

- name: load vars from file

include_vars: vars/vars.yml

- name: TASK 1 - PRINT INTERFACE

debug:

msg: "The interface is {{ interface }}"

Extra Variables

• Known as "extra vars"

• Variables passed into a

playbook

• Highest priority

- name: display device clock

hosts: "{{ devices }}"

gather_facts: false

tasks:

- name: show clock on devices

ios_command:

commands: show clock

$ ansible-playbook playbook.yml –e “devices=r1”

$ ansible-playbook playbook.yml –e “devices=r1,r2”

$ ansible-playbook playbook.yml –-extra-vars “devices=r3”

• Extra variables can be passed from the cli using –e or - - extra-vars flag

112

Special (Built-in) Variables

Ansible has several built in special variables.

113

User Input

● At times we might need to accept input from the user and use it in playbook

● We can use vars_prompt to take input from the user

114

User Input

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

115

- name: get details from the console

hosts: "{{ device }}"

gather_facts: false

vars_prompt:

- name: username

prompt: "Enter the username"

private: no

- name: password

prompt: "Enter the password"

- name: device

prompt: "Enter device hostname"

tasks:

.

Ansible Assertions

● Assertions can be used to check presence or absence of some text in the response

● This is useful when we want to use Ansible to ensure compliance

● e.g. We can write a playbook to fetch the version of a device and check the presence of

an expected version in the output

○ If the response contains expected version, assertion is marked as pass else failure

message is shown

● Ansible assert module can be used for this purpose

116

Ansible Assertions

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

117

- name: get version details and assert

hosts: r1

gather_facts: false

tasks:

- name: get version using show version

ios_command:

commands:

- show version

register: myresult

- name: ensure expected ios version

assert:

that: "'Version {{ version }}' in myresult['stdout'][0]"

Ansible Assertions - Pass

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

118

$ ansible-playbook playbooks/old/14assert.yml -e version=15.6

.

TASK [get version using show version]

ok: [r1]

TASK [ensure expected ios version]

ok: [r1] => {

"changed": false,

"msg": "All assertions passed"

}

PLAY RECAP

r1 : ok=2 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

Ansible Assertions - Fail

● Ansible uses Jinja2 syntax for variables within a playbook, and uses curly brackets to

indicate a variable e.g. {{ interface }}

● Variables within a playbook can be defined under the optional vars parameter.

119

$ ansible-playbook playbooks/old/14assert.yml -e version=14.6

.

TASK [ensure expected ios version]

fatal: [r1]: FAILED! => {

"assertion": "'Version 14.6' in myresult['stdout'][0]",

"changed": false,

"evaluated_to": false,

"msg": "Assertion failed"

}

Ansible Loops

Loops are a programming element that repeat a portion of code a set number of times until the

desired process is complete.

Repetitive tasks are common in programming, and loops are essential to save time and minimize

errors.

In An Ansible we can iterate over :

1) List

2) List of hashes

3) Dictionary

4) Nested lists

120

Looping Over Ansible List

121

- name: loop over list

hosts: db1

gather_facts: false

vars:

users:

- user1

- user2

tasks:

- name: get usernames from list

debug:

msg:

- "Creating {{ item }} on the host {{ inventory_hostname }}"

loop: "{{ users }}

Looping Over Ansible Hash (JSON Obj)

122

- name: loop over hash

hosts: db1

gather_facts: false

vars:

users:

- { name: user1, group: wheel }

- { name: user2, group: root }

tasks:

- name: get user details form hash

debug:

msg:

- "Creating {{ item.name }} on the host {{ inventory_hostname }} in {{

item.group }}"

loop: "{{ users }}"

Looping Over Ansible Dictionary

123

- name: get version details and assert

hosts: db1

gather_facts: false

vars:

users:

- name: user1

group: wheel

- name: user2

group: root

tasks:

- name: get version using show version

debug:

msg:

- "Creating {{ item.name }} on the host {{ inventory_hostname }} in {{ item.group }}"

loop: "{{ users }}"

Ansible Conditionals

● Ansible can use conditionals to execute tasks or plays when certain conditions are met

● For example, a conditional can be used to determine available memory on a managed

host before Ansible installs or configures a service

● Help differentiate between managed hosts and assign them functional roles based on

the conditions

● Playbook variables, registered variables, and Ansible facts can all be tested with

conditionals

● Operators to compare strings, numeric data, and Boolean values are available

124

Ansible Conditionals (Cont.)

125

- name: conditional execution

hosts: db1

gather_facts: no

vars:

- to_be_executed: false

tasks:

- name: print something

debug:

msg: "Hello World! Ansible Calling..."

when: to_be_executed

Ansible Conditionals (Cont.)

126

$ ansible-playbook playbooks/old/18conditionals.yml

PLAY [conditional execution]

**

TASK [print something]

**

skipping: [db1]

PLAY RECAP

**

db1 : ok=0 changed=0 unreachable=0 failed=0

skipped=1 rescued=0 ignored=0

Running Tasks Conditionally (Cont.)

● Defining conditions using operations is shown below

127

Ansible Vault
● Ansible needs sensitive data such as passwords or API keys to configure managed

hosts

● Normally stored in playbooks or other files in vars as plain text

● When playbooks stored in GITHub for version management or back up this is a

Security risk and policy violation

● Ansible Vault can be used to encrypt / decrypt such files

● Comes bundled with Ansible install

● Available as command line tool called ansible-vault

● Can be used to create, edit, encrypt, decrypt and view files containing sensitive info

Ansible Vault (Cont.)

● Creating secrets file by entering the password directly

● Once password and confirm password are entered default vi editor is opened

● We can change this by setting an env variable EDITOR

○ export EDITOR=nano

129

$ ansible-vault create mysecrets.yml

New Vault password:

Confirm New Vault password:

$ export EDITOR=nano

Ansible Vault (Cont.)

● Edit the file either in vi or nano and put some variable

○ ansible_password=cisco

● Encrypted file is created successfully

● Try to open this file directly using cat or vi or nano

130

$ cat secrets.yml

$ANSIBLE_VAULT;1.1;AES256

32643862646330666363633362663432643733303438653165646238363065343761646664

3665313162643665656164323533343666326437313262380a363133653930663936613066

33306436663961663234336338373432396533386432663865636237656134376365653463

3161386162633564310a373962376136333332303436323962326635353330663565356131

36313431343633613365623237653632313936353230383664363061313735343163

Ansible Vault (Cont.)

● Use ansible-vault view to view the encrypted file

131

$ ansible-vault view secrets.yml

Vault password:

ansible_password=cisco

● Use ansible-vault edit to edit the encrypted file
$ ansible-vault edit secrets.yml

Vault password:

GNU nano 4.8 /home/nexadmin/.ansible/tmp/ansible-

local-16690vhugg19d/tmpfh9qmirz.yml

ansible_password=cisco

Ansible Vault (Cont.)

● Use ansible-vault decrypt to decrypt the encrypted file

132

$ ansible-vault decrypt secrets.yml

Vault password:

Decryption successful

$ cat secrets.yml

ansible_password=cisco

Ansible Vault (Cont.)

● Use ansible-vault encrypt to encrypt an unencrypted file

133

$ ansible-vault encrypt secrets.yml

New Vault password:

Confirm New Vault password:

Encryption successful

Ansible Vault (Cont.)

● Use ansible-vault rekey to change the encryption password

134

$ ansible-vault rekey secrets.yml

Vault password:

New Vault password:

Confirm New Vault password:

Rekey successful

Ansible Vault (Cont.)

● Instead of entering the encryption password on command line, we can put it in a file

and use the file for all the vault operations

135

$ nano vault-pass

$ cat vault-pass

devnet

$ ansible-vault create secrets.yml --vault-password-file=vault-pass

$ ansible-vault view secrets.yml --vault-password-file=vault-pass

ansible_password=cisco

$ ansible-vault decrypt secrets.yml --vault-password-file=vault-pass

Decryption successful

$ ansible-vault encrypt secrets.yml --vault-password-file=vault-pass

Encryption successful

Using Vault

● We are now ready to take advantage of running playbooks securely reading sensitive

data like passwords, api keys etc from vault encrypted files

● Write a playbooks that uses something from the encrypted file

136

- name: get secret vars from vault file

hosts: db1

gather_facts: no

vars_files:

- secrets/secrets.yml

tasks:

- name: print secrets

debug:

var: ansible_password

Using Vault (Cont.)

137

$ ansible-playbook playbooks/old/18vault_get_pwd.yml

ERROR! Attempting to decrypt but no vault secrets found

● Try running the playbook in the usual way

● Now try running the playbook with the vault password

● –vault-id is the flag used to send the password to decrypt the secret file

● @prompt allows user to enter this password at CLI prompt

$ ansible-playbook playbooks/old/18vault_get_pwd.yml --vault-id @prompt

Vault password (default):

PLAY [get secret vars from vault file]

TASK [print secrets]

**

ok: [db1] => {

"ansible_password": "cisco"

}

Using Vault (Cont.)

138

$ ansible-playbook playbooks/old/18vault$ ansible-playbook

playbooks/old/18vault_get_pwd.yml --vault-password-file=playbooks/old/secrets/vault-pass

PLAY [get secret vars from vault file]

TASK [print secrets]

**

ok: [db1] => {

"ansible_password": "cisco"

}

● We can prevent the password being prompted and let Ansible read it from password

file

● This is similar to the way we used password file for vault operations

Introduction

Jinja2 is a feature rich templating language widely used in the

Python ecosystem.

● Can be used directly in Python programs

● Can also be used in a wide range of applications as their

template rendering engine

● e.g.

○ Web frameworks like Django, Flask etc.

○ Configuration management tools like Ansible, Saltstack

○ Static site generator tools like Pelican and so on…...

● Let’s try to put things in perspective…...

139

Sample Cisco Certificate

140

Template

● Imagine Cisco having to print

thousands of such

certificates for the vast

number of certifications they

offer

● They create a template with

placeholders for the name of

the person, certification,

logo, dates etc.

● The things that tend to

change from one certificate

to the other

● The fixed part, along with

placeholders becomes a

template

141

Template with variable names

Placeholders in

computer terms are

nothing but variables

142

Data stored in variables

name certification_name

logo

143

Enters Jinja2

144

Final Document

145

Ansible with Jinja2

● As we know Ansible has a large collection of modules, Jinja2 module also

comes preinstalled with Ansible

● Ansible provides variables to the templates and renders them using the

template module which in turn calls the rendering engine of Jinja2

● Template rendering happens on Ansible controller

● Rendered task is then sent to the target machine for execution

● This is done to minimize the package requirement on target machine

● This also limits the amount of data Ansible passes to the target machine

146

Jinja2 Templating

● Jinja2 needs the following source ingredients to work

○ Template

○ Data

● Data can come from various sources like

○ JSON data returned by API

○ Loaded from static YAML file

○ Python dictionary defined in our application

● Basic idea is to identify static and dynamic parts of the documents

● Dynamic parts are parametrized, so they change according to the data passed

● Hence multiple versions of the document are created with static part being the

same and dynamic part changing as per the data passed

147

A more relevant use case - BGP Configuration
router bgp 45000

router-id 172.17.1.99

bgp log-neighbor-changes

neighbor 192.168.1.2 remote-as 40000

neighbor 192.168.3.2 remote-as 50000

address-family ipv4 unicast

neighbor 192.168.1.2 activate

network 172.17.1.0 mask 255.255.255.0

exit-address-family

Sample target config we want to generate

● Shown above is a short snippet of CIsco IOS configuration

● First we identify which part of the above snippet is static and which parts

change between devices

● Typically ASNs, IP Addresses, address family type etc. change between the

devices

● The parts that change are converted into variables to be substituted with

actual data when template is rendered at runtime
148

A more relevant use case - BGP Configuration
router bgp {{ local_asn }}

router-id {{ router_id }}

bgp log-neighbor-changes

neighbor {{ neighbor_id_1 }} remote-as {{ remote_asn_1 }}

neighbor {{ neighbor_id_2 }} remote-as {{ remote_asn_2 }}

address-family ipv4 unicast

neighbor {{ neighbor_id_1 }} activate

network {{ network }} mask {{ net_mask }}

exit-address-family

Actual values replaced with variables. This

becomes a template now.

● In Jinja2 anything found between a pair of double opening and closing curly

braces (“{{”, “}}”), known as delimiters, will be evaluated and replaced by the

engine

● The templating engine expects to find a variable with the same name in the list

of variables

● The variable name in the template will then be replaced with the value from the

data file which can be a JSON file, YAML file, Python dictionary etc.
149

A more relevant use case - BGP Configuration

local_asn: 95000

router_id: 172.17.1.200

neighbor_id_1: 192.168.10.200

neighbor_id_2: 192.168.20.200

remote_asn_1: 70000

remote_asn_2: 80000

network: 172.17.1.0

net_mask: 255.255.255.0

local_asn: 45000

router_id: 172.17.1.99

neighbor_id_1: 192.168.1.2

neighbor_id_2: 192.168.3.2

remote_asn_1: 40000

remote_asn_2: 50000

network: 172.17.1.0

net_mask: 255.255.255.0

● When we substitute Variable Set 1 into the

template, we get first set of BGP config

commands

● Similarly when we substitute Variable Set 2 into

the template, we get second set of BGP config

commands

Variable Set 1

Variable Set 2

150

Enters Jinja2

151

A more relevant use case - BGP Configuration
router bgp 45000

router-id 172.17.1.99

bgp log-neighbor-changes

neighbor 192.168.1.2 remote-as 40000

neighbor 192.168.3.2 remote-as 50000

address-family ipv4 unicast

neighbor 192.168.1.2 activate

network 172.17.1.0 mask 255.255.255.0

exit-address-family

Target config 1

router bgp 95000

router-id 172.17.1.200

bgp log-neighbor-changes

neighbor 192.168.10.200 remote-as 70000

neighbor 192.168.20.200 remote-as 80000

address-family ipv4 unicast

neighbor 192.168.10.200 activate

network 172.17.1.0 mask 255.255.255.0

exit-address-family

Target config 2

■ So you get the idea

■ You pass 2 sets of data to get 2

sets of config

■ Pass ‘n’ sets of data to get ‘n’ sets

of config

152

Jinja2 Templating - Template

153

router bgp {{ local_asn }}

router-id {{ router_id }}

bgp log-neighbor-changes

neighbor {{ neighbor_id_1 }} remote-as {{ remote_asn_1 }}

neighbor {{ neighbor_id_2 }} remote-as {{ remote_asn_2 }}

address-family ipv4 unicast

neighbor {{ neighbor_id_1 }} activate

network {{ network }} mask {{ net_mask }}

exit-address-family

Jinja2 Templating - Variable File

154

local_asn: 45000

router_id: 172.17.1.99

neighbor_id_1: 192.168.1.2

neighbor_id_2: 192.168.3.2

remote_asn_1: 40000

remote_asn_2: 50000

network: 172.17.1.0

net_mask: 255.255.255.0

Jinja2 Templating - Playbook

155

- name: bgp config generation using jinja2

hosts: r1

gather_facts: no

vars_files:

- vars/bgp_config_vars.yml

tasks:

- name: generate bgp config using templates and variables

template:

src: jinja2/templates/bgp_config.j2

dest: jinja2/dest/bgp_config.txt

register: output

delegate_to: localhost

Jinja2 Templating - Result File

156

router bgp 45000

router-id 172.17.1.99

bgp log-neighbor-changes

neighbor 192.168.1.2 remote-as 40000

neighbor 192.168.3.2 remote-as 50000

address-family ipv4 unicast

neighbor 192.168.1.2 activate

network 172.17.1.0 mask 255.255.255.0

exit-address-family

Software Version Control

With Git

157

Software Version Control

● Process of saving various copies of a file or set of files in order to track changes

made to those files

● Involves a database that stores current and historical versions of source code

● Allow multiple people or teams to work on it at the same time

● In case of any issue we can always go back to any of the previous revisions

158

Software Version Control

● Prevents developers from accidentally losing code due to laptop crashes

● Allows periodic checking in of code to hierarchical tree structure of folders

with code in them

● Keeps tracks of who changed what and when via a process of tagging

● Allows concurrent checkins by multiple developers

● Allows multiple versions of code to be maintained via the process of branching

● This is useful when different features to be delivered to different customers

● If both features are part of main project or product, the sub branches can be

merged into the main or master branch

159

Git

● Git is the most popular and widely used Software Version Control System

● It is free and open source software

● Created by Linus Torvalds who is also the creator of Linux

● Git is a distributed version control system known for its speed and scalability

160

Git (Cont.)

● Git uses the traditional file system like structure to track the changes to files

● Keeps track of the following main structures or trees

○ Working directory

■ Local directory where all the code, binaries, images, docs etc. are

stored

○ Staging area

■ Internal storage area for items to be synced (new and changed)

○ Local repository

■ Internal storage area for committed items
161

Git (Cont.)

● Every file being managed by Git has a status attached to it

● Its goes through a status life cycle based on the modifications happening

● The status of the file at any point of time determines how Git handles the file

162

Git - File Status Life Cycle

● Untracked

○ Any file that is created in a dir that is managed by git is in this status

○ Git sees untracked files but do not do version control on them

○ For them to be tracked, we have to explicitly tell git to do so using git add <filename>

command

● Unmodified

○ Git is watching these files for changes but did not find any

163

Git - File Status Life Cycle

● Modified

○ Any file tracked by Git which has undergone a modification

○ Modified files are currently being worked upon

○ Once modifications are done, we need to use git add

● Staged

○ Modified file which is added to the index or staging area

○ Ready to be committed (pushed to local repository)

○ We need to commit using git commit

164

Git - File Status Life Cycle

165

Git Workflow

166

Working with Git

● In Linux we can install git using apt or yum or any package manager based on the

Linux flavor

● In windows we can download and install git from https://gitforwindows.org/

● Once installed we can start using git from the CLI or UI

167

https://gitforwindows.org/

Git Configuration

● Before we can start using Git to commit the code, we need to configure username

and email

● The username and email are just labels and are used just to track the commits

● They have nothing to do with the email used to register hosted services like github

or gitlab or anything else

● However git makes it mandatory for these details to be provided

● Configuration can be global (across repos) or repo specific

168

Git Configuration

169

● Global config is shown below

$ git config --global user.name DevNetAdmin

$ git config --global user.email devnet_admin@octa.com

$ git config --list

user.email=devnet_admin@octa.com

user.name=DevNetAdmin

http.sslcainfo=/etc/ssl/certs/ca-certificates.crt

● Local or repo specific config is shown below
$ git config user.name DevNetUser

$ git config user.email devnet_user@octa.com

Tracking an existing folder

● cd to an existing project dir and use the command git status

● Since git does not know about this folder, you should see an error like below

170

$ pwd

/home/nexadmin/work/ccna_devnet/git_test

$ git status

fatal: not a git repository (or any of the parent directories): .git

$

Tracking an existing folder

● Use the command git init to tell git to start tracking this folder

● Use the command git status again

171

$ git init

Initialized empty Git repository in /home/nexadmin/work/ccna_devnet/git_test/.git/

$ git status

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

$

Tracking an existing folder

● git init command made the current directory as a git directory

● By default it creates a branch named master

● git status show that there is nothing changed hence nothing to do

● Copy or create a new file in this directory and use git status again

172

$ touch new_file.txt

$ git status

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

new_file.txt

nothing added to commit but untracked files present (use "git add" to track)

Tracking an existing folder

● New file is in untracked status

● Follow the instruction given and do git add <filename>

● This moves the file to staging area, ready to be committed

173

$ git add new_file.txt

$ git status

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: new_file.txt

Tracking an existing folder

● If we added by mistake we can remove it using the command

shown

● Else we can commit it using the command git commit -m

<comments>

● Committing will put the file into local repository

174

$ git commit -m "new file added"

[master (root-commit) 377d9ea] new file added

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 new_file.txt

$ git status

On branch master

nothing to commit, working tree clean

$

Tracking an existing folder

● Use git log to check what who checked in what and when

● We have successfully version controlled a blank file :)

● From now on the process is same for every change/ edit that happens to the file

175

$ git log

commit 377d9ea7f393ac54c2dda2a18976712e8a46b16d (HEAD -> master)

Author: Nagaraj <nravinuthala@gmail.com>

Date: Wed Jan 4 06:14:11 2023 -0500

new file added

$

Remote Repositories

● What we did so far

○ Created a local git repo with some files under it

● This still runs the risk of losing the content if the system crashes

● The solution is in git itself as it is a distributed version control system

● Meaning there is a remote repository corresponding to the local repository

● Github or Gitlab are hosted applications based on git and support remote

repositories

176

Cloning a repository

● We can clone a remote repository from github to loal using the command git clone

● But first we need the repository URL

● Go to github, login and search for the repository you are interested in

● Once found, look for a green button named Code and click on it

● You will see 3 options, HTTPS, SSH and GitHub CLI

● These are 3 ways of interacting with remote repositories

● SSH is the preferred means of interaction

● For SSH connectivity, we need to generate an SSH key on the client and add that

key to github

177

Cloning a repository

178

SSH Key Management

● Generating SSH Key

○ https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-

a-new-ssh-key-and-adding-it-to-the-ssh-agent

● Adding ssh key to github

○ https://docs.github.com/en/authentication/connecting-to-github-

with-ssh/adding-a-new-ssh-key-to-your-github-account

179

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Cloning a repository

● Shown below is the output of cloning the repository using SSH connection

180

$ git clone git@github.com:CiscoTestAutomation/pyats.git

Cloning into 'pyats'...

remote: Enumerating objects: 1292, done.

remote: Counting objects: 100% (215/215), done.

remote: Compressing objects: 100% (168/168), done.

remote: Total 1292 (delta 97), reused 78 (delta 46), pack-reused 1077

Receiving objects: 100% (1292/1292), 2.01 MiB | 878.00 KiB/s, done.

Resolving deltas: 100% (717/717), done.

$

Cloning a repository

● Once a repo is cloned, it sits in your local file system like a local project being

managed by git as a local repository

● We can work on any of the files using your favourite IDEs

● Once any existing files are changed/ removed or new files are added, committing

them to local repo is same as steps mentioned above

181

Pushing and Pulling Files

● Pushing files is the process of syncing new files or changes from local repo to

remote repo

● Pulling is the reverse process of pushing - refers to getting latest changes from

remote to local

● To be able to do this, first the remote repo details should be configured with the

local repo

● When we clone a repo, these details are automatically added

● Verify it using the command git remote -v

182

Pushing and Pulling Files

● If remote repo is already configured, we should see something like below

● If not we can configure it as follows

183

$ git remote -v

origin git@github.com:CiscoTestAutomation/pyats.git (fetch)

origin git@github.com:CiscoTestAutomation/pyats.git (push)

$

$ git remote add remote_repo git@github.com:CiscoTestAutomation/pyats.git

$ git remote -v

origin git@github.com:CiscoTestAutomation/pyats.git (fetch)

origin git@github.com:CiscoTestAutomation/pyats.git (push)

remote_repo git@github.com:CiscoTestAutomation/pyats.git (fetch)

remote_repo git@github.com:CiscoTestAutomation/pyats.git (push)

$

Pushing and Pulling Files

● If remote repo is already configured, we should see something like below

● If not we can configure it as follows

184

$ git remote -v

origin git@github.com:CiscoTestAutomation/pyats.git (fetch)

origin git@github.com:CiscoTestAutomation/pyats.git (push)

$

$ git remote add remote_repo git@github.com:CiscoTestAutomation/pyats.git

$ git remote -v

origin git@github.com:CiscoTestAutomation/pyats.git (fetch)

origin git@github.com:CiscoTestAutomation/pyats.git (push)

remote_repo git@github.com:CiscoTestAutomation/pyats.git (fetch)

remote_repo git@github.com:CiscoTestAutomation/pyats.git (push)

$

Reverting to a previous commit

● We know that git is all about revisions of code in the repo

● So it should be possible to go back to a previous revision if needed

● The commands git reset and git revert will help us do this

● Git Reset will not preserve commit history and overwrites files and hence there is a

risk of losing someone else’s changes

● So reset is typically used in local repo to revert individual user changes

● In a distributed env git revert is preferred as it preserves commit history

185

Reverting to a previous commit

● Create a sample file and make 2 or 3 commits

186

$ git log --oneline

b38670c (HEAD -> master) commit3

d37f1a7 commit2

f776383 commit1

$ cat test_file.txt

line 1

line 2

line 3

Reverting to a previous commit

● Revert the last commit and check the file contents and git log

● Note that commit history is preserved

187

$ git revert b38670c

[master 2bc3f70] Revert "commit3"

1 file changed, 1 insertion(+), 1 deletion(-)

nexadmin@DESKTOP-89IJ1T7:~/work/ccna_devnet/git_test2$ cat test_file.txt

line 1

line 2

$ git log --oneline

2bc3f70 (HEAD -> master) Revert "commit3"

b38670c commit3

d37f1a7 commit2

f776383 commit1

Reverting to a previous commit

● Now do a git reset and give commit id of the first commit with an option –hard

● File is overwritten with commit 1 version and commit history is lost as well

● Hence git reset should be used with caution and should ideally be limited to local

repository

188

$ git reset f776383 --hard

HEAD is now at f776383 commit1

$ cat test_file.txt

line 1

$ git log --oneline

f776383 (HEAD -> master) commit1

Syncing changes from remote repo

● We have already seen git pull which syncs local with remote

● This gets the changes from the remote repo and updates the local copy of the

remote repo as well as the local repo

● In some cases, you may want to just get the latest changes from remote repo but

not update the local repo

● In such cases we can use git fetch

● This gets the changes from remote and updated the local copy of the remote repo

but not the local repo

● After this we have to do a git merge to update the local repo

● git fetch + git merge is considered to be safer then git pull 189

Syncing changes from remote repo

190

$ cat new_file.txt

new content added

$ git fetch git_test_remote master

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), 664 bytes | 664.00 KiB/s, done.

From github.com:nravinuthala/git_test

* branch master -> FETCH_HEAD

a16c203..c335731 master -> git_test_remote/master

Syncing changes from remote repo

191

$ git merge git_test_remote/master master

Updating a16c203..c335731

Fast-forward

new_file.txt | 1 +

1 file changed, 1 insertion(+)

$ cat new_file.txt

new content added

new content added on remote

$ cat new_file.txt

new content added

Working with Branches

● Branching is another useful feature of Git

● Support there is a defect in the product given to a customer, we need to fix the

defect

● At the same time a new feature development is happening

● So we create 2 branches, one for defect fix and other for new feature development

● This is to ensure that the new feature development will not cause more issues for

the customer who already has a previous version working well

● Branches can be created in either of the following ways

○ git checkout -b <branch name>

○ git branch <branch name> 192

Working with Branches

193

$ git branch

* master

$ git branch bugfix

$ git branch

bugfix

* master

● Using git branch, new branch is created but we are still in old branch

● Need to checkout to change to new branch

$ git checkout bugfix

Switched to branch 'bugfix'

$ git branch

* bugfix

master

Working with Branches

194

$ git checkout -b new_feature

Switched to a new branch 'new_feature'

$ git branch

bugfix

master

* new_feature

● The command git checkout -b does this in a single step

Working with Branches

195

$ cat new_file.txt

new content added

new content added on remote

$ git merge bugfix

Updating c335731..8e20ed6

Fast-forward

new_file.txt | 1 +

1 file changed, 1 insertion(+)

$ cat new_file.txt

new content added

new content added on remote

defect fixed

● Once the bug or new feature is tested and is working fine, we can merge those

branches with master and delete them

Working with Branches

196

$ git checkout new_feature

new_file.txt: needs merge

error: you need to resolve your current index first

$ cat new_file.txt

new content added

new content added on remote

<<<<<<< HEAD

defect fixed

=======

new feature added

>>>>>>> new_feature

● If same file is modified by two people or in two branches we will have a conflict

Working with Branches

197

$ git checkout bugfix

new_file.txt: needs merge

error: you need to resolve your current index first

$ cat new_file.txt

new content added

new content added on remote

<<<<<<< HEAD

defect fixed

=======

new feature added

>>>>>>> new_feature

● If same file is modified by two people or in two branches we will have a conflict

Working with Branches

198

new content added

new content added on remote

<<<<<<< HEAD

defect fixed

=======

new feature added

>>>>>>> new_feature

● Git adds some lines to highlight the conflicting parts

● We can decide what to do, delete parts added by git and commit the file

new content added

new content added on remote

defect fixed

new feature added

Working with Branches

199

$ git add .

$ git commit -m "resolved conflict"

[master e223b6f] resolved conflict

$ git branch -d bugfix

Deleted branch bugfix (was 8e20ed6).

$ git branch -d new_feature

Deleted branch new_feature (was 54f242c).

● We decided to keep both bug fix and new feature

● Save and commit changes

● Branches can now be deleted

Comparing commits with diff

200

$ git diff

diff --git a/new_file.txt b/new_file.txt

index 27bf150..477307c 100644

--- a/new_file.txt

+++ b/new_file.txt

@@ -2,3 +2,4 @@ new content added

new content added on remote

defect fixed

new feature added

+new code added

● git diff show difference between local repo and staging

● Make some change to the file in working dir and do not stage it and do a diff

Comparing commits with diff

201

$ git diff --cached

diff --git a/new_file.txt b/new_file.txt

index 27bf150..477307c 100644

--- a/new_file.txt

+++ b/new_file.txt

@@ -2,3 +2,4 @@ new content added

new content added on remote

defect fixed

new feature added

+new code added

● git diff –cached show difference between staging and last commit

● Stage the file using git add and do a diff

Comparing commits with diff

202

$ git diff HEAD

diff --git a/new_file.txt b/new_file.txt

index 27bf150..477307c 100644

--- a/new_file.txt

+++ b/new_file.txt

@@ -2,3 +2,4 @@ new content added

new content added on remote

defect fixed

new feature added

+new code added

● git diff HEAD show difference between working directory and last commit

● Useful to know effect of next commit on the local repo

Comparing commits with diff

203

$ git diff bugfix new_file.txt

● Diff can also be used to check difference between current and target branch

● git diff <branch_name> <file_name> shows difference in file_name between

current and branch_name

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Introduction to Python
	Slide 6: What is a development environment?
	Slide 7: Development Environment (Cont.)
	Slide 8: Development Environment (Cont.)
	Slide 9: Scripting vs Programming
	Slide 10: Fundamentals of Programming
	Slide 11: What is Python?
	Slide 12: What is Python?
	Slide 13: 3. What is Python?
	Slide 14
	Slide 15: Python Modes:
	Slide 16: Script mode:
	Slide 17
	Slide 18: What are Python Identifiers?
	Slide 19
	Slide 20: A} Python Variables:
	Slide 21: Example*
	Slide 22:
	Slide 23: 1)Assigning multiple variables at once:
	Slide 24: Reserved Key Words in Python:
	Slide 25: Multi-line statements:
	Slide 26: Data Types used in Python:
	Slide 27: A. String:
	Slide 28: Some of the Basic Operations you can perform on a string.
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: B.Lists:
	Slide 35: Some of the Basic Operations you can perform on Lists.
	Slide 36:
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Tuple
	Slide 41: Some of the Basic Operations you can perform on Tuple.
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Dictionaries
	Slide 46: Decision Making
	Slide 47: Conditionals
	Slide 48: Ansible
	Slide 49: Introduction
	Slide 50: Introduction (Cont.)
	Slide 51: Ansible Components
	Slide 52: Ansible Components (Cont.)
	Slide 53: Ansible Components (Cont.)
	Slide 54: Automating Linux Servers
	Slide 55: Automating Network Devices
	Slide 56: Ansible Installation
	Slide 57: Ansible Installation (Cont.)
	Slide 58: Ansible Installation (Cont.)
	Slide 59: Ansible Configuration
	Slide 60: Ansible Configuration (Cont.)
	Slide 61: Ansible Configuration (Cont.)
	Slide 62: Ansible Configuration (Cont.)
	Slide 63: Ansible Configuration (Cont.)
	Slide 64: Ansible Inventory
	Slide 65: Ansible Inventory (Cont.)
	Slide 66: Ansible Inventory (Cont.)
	Slide 67
	Slide 68: Getting Started
	Slide 69: Getting Started (Cont.)
	Slide 70: Getting Started (Cont.)
	Slide 71: Getting Started (Cont.)
	Slide 72: Getting Started (Cont.)
	Slide 73: Getting Started (Cont.)
	Slide 74: Getting Started (Cont.)
	Slide 75: Getting Started (Cont.)
	Slide 76: Getting Started (Cont.)
	Slide 77: Ansible Ad hoc Commands
	Slide 78: Ansible Ad hoc Commands (Cont.)
	Slide 79: Ansible Ad hoc Commands (Cont.)
	Slide 80: Ansible Ad hoc Commands (Cont.)
	Slide 81: Ansible Ad hoc Commands (Cont.)
	Slide 82: Ansible Ad hoc Commands (Cont.)
	Slide 83: Ansible Ad hoc Commands (Cont.)
	Slide 84: Ansible Ad hoc Commands (Cont.)
	Slide 85: Ansible Playbooks
	Slide 86: Playbook Indentation
	Slide 87: Writing a Playbook
	Slide 88: Playbook Example
	Slide 89: Running a Playbook
	Slide 90: Running Playbook
	Slide 91: Special Variables - hostvars
	Slide 92: Special Variables - ansible_version
	Slide 93: Special Variables - ansible_facts
	Slide 94: Special Variables - ansible_facts (Cont.)
	Slide 95: Debug Module to Print Output
	Slide 96: Backing Up Configs
	Slide 97: Ansible Modules
	Slide 98: IOS Configuration
	Slide 99: IOS Configuration (Cont.)
	Slide 100: IOS Configuration (Cont.)
	Slide 101: IOS Configuration (Cont.)
	Slide 102: IOS Configuration (Cont.)
	Slide 103: IOS Configuration (Cont.)
	Slide 104: Ansible Check Mode
	Slide 105: Host Variables
	Slide 106: Group Variables
	Slide 107: Verbosity in Ansible
	Slide 108: Playbook Variables
	Slide 109: Playbook Variables
	Slide 110: Playbook Variables - From File
	Slide 111: Playbook Variables - From File
	Slide 112: Extra Variables
	Slide 113: Special (Built-in) Variables
	Slide 114: User Input
	Slide 115: User Input
	Slide 116: Ansible Assertions
	Slide 117: Ansible Assertions
	Slide 118: Ansible Assertions - Pass
	Slide 119: Ansible Assertions - Fail
	Slide 120: Ansible Loops
	Slide 121: Looping Over Ansible List
	Slide 122: Looping Over Ansible Hash (JSON Obj)
	Slide 123: Looping Over Ansible Dictionary
	Slide 124: Ansible Conditionals
	Slide 125: Ansible Conditionals (Cont.)
	Slide 126: Ansible Conditionals (Cont.)
	Slide 127: Running Tasks Conditionally (Cont.)
	Slide 128: Ansible Vault
	Slide 129: Ansible Vault (Cont.)
	Slide 130: Ansible Vault (Cont.)
	Slide 131: Ansible Vault (Cont.)
	Slide 132: Ansible Vault (Cont.)
	Slide 133: Ansible Vault (Cont.)
	Slide 134: Ansible Vault (Cont.)
	Slide 135: Ansible Vault (Cont.)
	Slide 136: Using Vault
	Slide 137: Using Vault (Cont.)
	Slide 138: Using Vault (Cont.)
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146: Ansible with Jinja2
	Slide 147: Jinja2 Templating
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: Jinja2 Templating - Template
	Slide 154: Jinja2 Templating - Variable File
	Slide 155: Jinja2 Templating - Playbook
	Slide 156: Jinja2 Templating - Result File
	Slide 157: Software Version Control
	Slide 158: Software Version Control
	Slide 159: Software Version Control
	Slide 160: Git
	Slide 161: Git (Cont.)
	Slide 162: Git (Cont.)
	Slide 163: Git - File Status Life Cycle
	Slide 164: Git - File Status Life Cycle
	Slide 165: Git - File Status Life Cycle
	Slide 166: Git Workflow
	Slide 167: Working with Git
	Slide 168: Git Configuration
	Slide 169: Git Configuration
	Slide 170: Tracking an existing folder
	Slide 171: Tracking an existing folder
	Slide 172: Tracking an existing folder
	Slide 173: Tracking an existing folder
	Slide 174: Tracking an existing folder
	Slide 175: Tracking an existing folder
	Slide 176: Remote Repositories
	Slide 177: Cloning a repository
	Slide 178: Cloning a repository
	Slide 179: SSH Key Management
	Slide 180: Cloning a repository
	Slide 181: Cloning a repository
	Slide 182: Pushing and Pulling Files
	Slide 183: Pushing and Pulling Files
	Slide 184: Pushing and Pulling Files
	Slide 185: Reverting to a previous commit
	Slide 186: Reverting to a previous commit
	Slide 187: Reverting to a previous commit
	Slide 188: Reverting to a previous commit
	Slide 189: Syncing changes from remote repo
	Slide 190: Syncing changes from remote repo
	Slide 191: Syncing changes from remote repo
	Slide 192: Working with Branches
	Slide 193: Working with Branches
	Slide 194: Working with Branches
	Slide 195: Working with Branches
	Slide 196: Working with Branches
	Slide 197: Working with Branches
	Slide 198: Working with Branches
	Slide 199: Working with Branches
	Slide 200: Comparing commits with diff
	Slide 201: Comparing commits with diff
	Slide 202: Comparing commits with diff
	Slide 203: Comparing commits with diff

